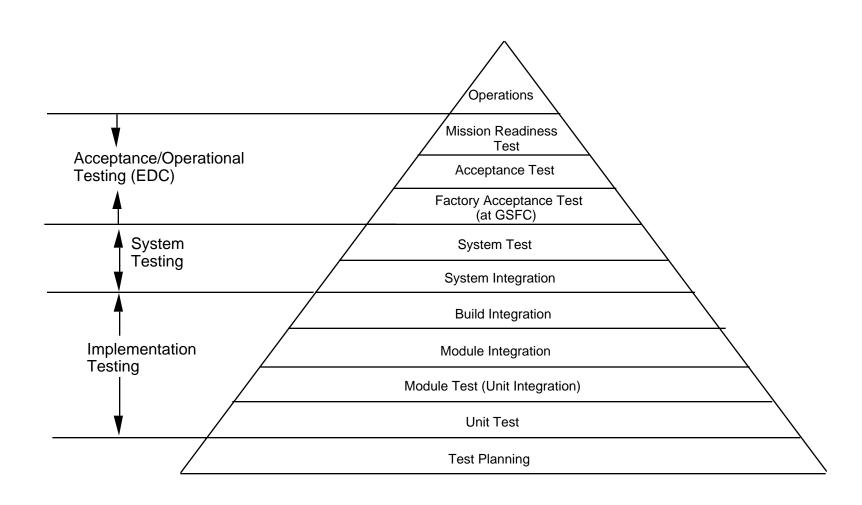
IAS Critical Design Review

Agenda

•	Introduction	R. Schweiss
•	Design Overview	S. Johnston
•	Hardware Architecture	C. Brambora
•	Operational Scenarios	S. Johnston
•	Software Design	
	Overview	J. Hosler
	 Operations Interface 	J. Whelan
	 Management and Control 	A. Williard
	Database	A. Williard
	L1 Processing	T. Ulrich
		J. Storey
	 Evaluation and Analysis 	D. Kaufmann/M. Schienle
•	System Test	E. Crook
•	Conclusion	R. Schweiss

IAS Critical Design Review



Agenda

- System Test
 - System Test Objective
 - System Test Strategy
 - Algorithms testing and verification
 - System Test Processes
 - Configuration Control Activities
 - System Test Activities
 - System Test Tools
 - System Test Issues

IAS Critical Design Review System Test Objective

IAS Critical Design Review

System Test Strategy

- Conduct rigorous algorithm testing during the module test phase
- Once in the system test phase, compare algorithm results
- Verify proper implementation of interfaces
- Verify compliance with requirements

IAS Critical Design Review

Algorithm Testing & Verification

Radiometry Algorithm Testing

- Joint testing effort (testing & development)
- Identify algorithm test cases
- Identify test tools requirements (Test data, drivers and stubs)
- Verify Test Tools
- Conduct tests
- Analyze and verify test results (developers, testers, consultants, science team ...)

Geometry Algorithm Testing

- EDC testing effort
- Conduct tests and verify test results

IAS Critical Design Review System Test Processes

- IAS System Integration and Test Plan
 - Documents the plan and requirements for the Development Verification and Validation
- System Test Procedures
 - Contains detailed procedures for each release test, generated 1 month before beginning of each release system test
- Test Procedures Walkthrough
 - Conducted 3 weeks before beginning of each release test, insures that the proposed test procedures adequately describe the operation of the system and verify the system requirements implemented for the current release.

IAS Critical Design Review

System Test Processes(cont.)

- System Test Readiness Review
 - Conducted 1 week before beginning of each release test to ascertain readiness of software and system test activities
- System Test Reports
 - Test summary reports are generated within 4 weeks of completion of each release test

IAS Critical Design Review

Configuration Control Activities

- Maintain configured test tool library
- Document each test environment (i.e., software versions) via a checklist audit prior to the start of a test period.
- Establish and maintain software baseline
- Provide cleanup and maintenance of the test environment after each release test
- Receive software turnover from the development group, promote units to the test environment, release the system executables and copy them to the test environment
- Prepare software installation packages

IAS Critical Design Review

System Test Activities

System Test Activities

Status

Complete **Insure testability of System Requirements Insure testability of Software Requirements** Complete **Develop System Integration and Test Plan** Complete

Test Data Requirements Test Tool Identification

Establish Test Schedule

Develop Necessary Test Tools In Progress

Develop System Test Procedures Create Test Scenarios

Generate Test Data Sets

Verify Test Tools

Develop detailed test schedule per release

Conduct System Test Readiness Reviews

Integrate System Components

Execute System Tests

Generate Test Summary Reports

For each release

For each release For each release

For each release

For each release

IAS Critical Design Review

System Test Tools

<u>TOOL</u>	RESOURCE	<u>STATUS</u>
GTSIM	CNMOS	Reformat L5 to L7 format
LPS	CNMOS	Release 2 in Integration
HDF Swath to HDF	CNMOS	TBD
EDC DAAC Simulator	CNMOS	Release 1
MOC Simulator	CNMOS	Release 1
VSHOW	CNMOS	COTS
Collage	CNMOS	COTS
Database Table Dumps	CNMOS	Complete

IAS Critical Design Review System Test Issues

- There are 3 test requirements which require post launch data for test verification.
- 3.2.3.4 The IAS shall be able to create systematic imagery to a geodetic accuracy of 250 meters, 1 sigma, providing all inputs are within specification. Performance applies to alongtrack and cross-track directions and is referenced to a nadirviewing geometry.
- 3.2.3.8 The IAS shall provide the capability to perform image-to-image registration to an accuracy of 0.4 multispectral sensor GSD 0.9p, inthe along-track and cross-track directions, providing all inputs are within specification.
- 3.2.3.10 The IAS shall be capable of estimation the field angles to an accuracy of 0.18 arcsec, 1 sigma.